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A METHOD OF SHEAR-LAG ANALYSIS OF BOX BEAMS
FOR AXIAL STRESSES, SHEAR STRESSES, AND SHEAR CENTER

By Oscar Erlandsen, Jr,, and Lawrence ¥, Mead, Jr.
SUMMARY

A practical and relatively rapid method of compensat-—
ing for shear lag in box~team analysis, with accuracy suf-
ficient ,for design purposes, is presented. Effectiveness
curves for box-beam elements are derived for an 1ldeal,
symmetrical structure. Application of the ideal curves to
practical structures is described in detail using, as ex—
amples, the center sectlon of the wing for an airplane des-~
ignated as A and the unsymmetrical D-beam of the wing
for an airplane designated as 3.

Tabular computation forms for rapid, accurate calcula-
tion of axial stresses, shear center, and shear stresses
for a beam with shear lag are included, ZResults of analy-
sis are compared with test stress distributions. Analyti-
cal methods of checking the shear-lag curves by the use of
the principlc of consistont deformations are illustrated
as a further indication of thelr reliadility.

INTRODUCTION

Bending stresses in box beams with .thin cover sheets
usually differ from those calculated by the ordinary bend-
ing theory. Thig difference is caused primarily by shear
deformation in the flanges or cover sheets. In order to
compensate for differences from the theory, methods of
shear-lag analysis have been developed.

Kuhn {references 1 to 5) has done much mathematical
and experimental work on idealized structures under sim-
ple loading conditions and has developed two methods of
shear—lag analysis - the substitute single-stringer method
and the shear-fault method - that approach the problem by
means of arithmetic integration. This approach gives falr-
ly accurate results for beams that are fairly symmetrical.

i rome 41w dbs the Deam becomes more unsymmetrical, however, with
possibilities of changes of taper, camber, variable sec-
tions, discontinuous stringers, holes, and indeterminate
boundary conditions and as the loading pattern becomes less
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" simple, the NACA methods become more difficult to apply.

The computation is very tediocus and of dubious accuracy
where there are excessive approximations required of the
designer in idealizing the structure so that it will fit
the method. Furthermore, the NACA methods require two
separate analyses for beam and chord bending, which con-
siderably lengthens the calculations.

From design considerations, it is desirable to have a
simple flexible method of shear-lag analysis that can be
tailored to the individual conditions of any wing bean,

It should require a minimum of idealization of sections so
that irregular beams may be readily analyzed and should, if
possible, enable a simultaneocus consideration of beam and
chord bending, It should be possible to check the results
of the analysis in a simple straightforward fashion.

The method. of shear-lag analysis herein presented was
developed by the Grumman Aircraft Engineering Corporation
in the course of recent designs and, it is believed, incor-
porstes these desirable features.

OUTLINE OF METHOD

Essentially, the method consists in applying a correc-
tion for shear lag to the areas of a beam cross section
and then analyziang the substitute beam by the conventional
bending theory. A check for the shear-lag correction can
be made if desired.

(1) Shear lag reduces the effectiveness of cover sheet and
stringers for carrying bending stresses. Consequently,
stresses in the cap strips will be raised and stresses in
the stringers will be reduced from those computed by the
ordinary beam theory. 1f the stringer stress at a section
decreases 20 percent and the cap-strip stress increases 10
percent from the theory, the effectiveness factor E' for
the stringer will be 100 - 10 -~ 20 = 70 percent, referred
to the beam theory cap-strip stress as 100 percent.

Effectiveness curves are drawn in chordwise and span-
wise directions for each stringer and wing section by tak-
ing mathematically ideal curves and altering them arbitrar-
ily to suit local conditions in the structure. Care must
be taken that the location of the centroid of the effective
material, and hence the shear ceunter, varies in a smooth
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spanwise curve, Commen sense, cross-plotting, and a few
rough checks will give surprisingly good results even with
little experience in drawing such curves,

(2)-\Stringer and effective sheet areas are reduced by the
effectiveness factor E'!', and section properties are com-
puted giving reduced "effective" wvalues for Igy and I,,

(3) Axial stresses are computed by use of the method pre-
sented in reference 6 for unsymmetrical bending, modified
to take the effectliveness factors into account. These
stresses should give the actual stringer and cap~strip
stresses compensated for the shear-lag effect.

(4) Shear stresses in the skin and webs that go with the
axlal stresses found in (3) can then be accurately com-
puted by the new method. The shear center can also be ac-
curately located and its position at the various wing sec-
tions can be checked to see that i1t falls on a smooth
spanwise curve,

(5) The accuracy of the original selection of B! can be
proved by utilizing the principle of consigtent deforma-
tions. Any two points on the wing surface can be selected
and the deformation of one of them from the other can be
conmputed by two or more different paths, using the axial
and the shear stresses obtained in the analysis., These de-
formations should agree if the values of E' were reason-
ably correct,

COMPARISON WITH NACA METHODS

. The main difference between the effectiveness~factor
method and the NACA methods of shear~lag analysis is the
point at which engineering judgment is required.  The NACA
calls for judgment in idealizing the section before shear
lag 1s considered., The effectiveness~factor method re-~
gquires an estimate of the shear-lag effect at the outset.
It is believed that in the design of new wings, the
effectiveness—-factor method is more direct, more rapidly
applied, and comparably.accurate.

In the NACA methods it is easy for the average person
to lose sight of the physical significance of the problen

‘amidst the maze of coefficients and unfamiliar formulas

and to make time-consuming mistakes. The effectiveness—
factor method obviates this possibility, it is felt, by 1ts
simplicity and flexibility.




(1) Once the effectiveness curves have been drawn, the
analysis follows the standard beam theory. Both beam and
chord bYending are considered simultaneously, as described
later.

(2) The method is perfectly applicable to any shape of
beam beczuse the areas of the existing structure are
"changed rather than the shape of the beam being idealigzed
without changing the areas, as is done in the NACA method.
It is believed that changing the asrea is an easier task,
particularly for complex unsymmetrical sections such as D~
beams, where idealization of shape would be very difficult.

(3) Local irregularities and changes in section can be
‘"readily considered by suitably drawing the effectiveness
curves., Material outside the main beam may also be con~
sidered in the calculations if it is believed that it
carries bending stress. This consideration would be dif-
ficult by the NACA method.

(4) Effectiveness curves-give a handy tool with which to
design stringer skin-rivet connections,

Analyses by both the NACA and the effectiveness-
factor methods were made for o wing section of ‘airplane A
and were compared with test results. Remarkably good
agreement was shown for both methods, but the effectiveness-
factor method showed more adaptability to local conditions
and reguired less computation,

EFFECTIVENESS-FACTOR CURVES

The nature of effectiveness factorsg and their appli-
cation to shear~lag analysis will now be developed and
illustrated for a simple case. A mathematical derivation
of formulas for the vzlucs and the shape of effectiveness~
factor curves in both spanwise and chordwise directions
will be presented for an idealized beam. The method of
considering besam and chord bending simultaneously with
shear lag included will be outlined, and the relation be-
tween effectiveness curves and thc location of the shear
center in unsymmetrical sections will be discussed,



Nature of Shear Lag

Shear lag and how to compensate for it can be illus-
trated by consideration of figure 1, wnich represents -the

"vottom surface of a wing beam from the plane of symmetry

of the airplane to the hinge fittings for the outer panel,
Here two loads P act on the cap strips.

The usual theory assumes that the panels will elongate
as shown in figure 1(a), which would require uniform stress
across the panel at all .sections, even across section D,
This aSsumption is obviously impossible because the center
stringer can have no stress or axlal load at its outer
free end,

Actually the panel will deform as in figurc 1(b) ow=-
ing to the skear deflection or "lag" in the sheet. The
thinner the sheet the more the lag. At the free end the
stress In the stringer will be zero. As one progresses
along the stringer toward the root, the load P starts to
spread out into the sheet in the form of shear stresses
that load up the stringer.

At the root for an infinitely long panel the stress
in the stringer would be equal to that in the cap strips
and there would be no shear stress in the sheet and no
shear lag.

It is important to realize that the stringer can be
loaded only by shear from the sheet. If the panel is
short or the sheet very thian, the sheet will not be able
to transmit enough load to the stringer to stress it at
the root to the same amount as the cap strip (as would be
figured from the ordinary beam theory). This case is usu-
ally true for wing box beams,

Hence, it is seen that the stress in the stringer
varies from zero to some maximum value at the root; this
value depends on the dimensions of the beam, Compared
with the uniform stress of P/A calculated from the beam
theory, the stringer is operating at a reduced stress, or
reduced effectiveness, that varies on some smooth curve
from B! = 0 at the free end to E! = maximum at the
root, Likewlise the cap-strip stress will vary from a max-
imum Value of the free end to a mlnimum Value of the root.,.
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These deviatlons from the beam~theory stress may be
obtained from figure 2.




At seetion C of figure 1(b), let it be assumed that
with shear lag the stringer stress will be half of that
computed by the P/A formula (fig. 2). The value of E!
for the stringer would be 0.50 and for the cap strips
would be slightly greater than 1.00. It is convenient,

however, always to assume the E for the cap strips to be
unity. :

The effectiveness BE'  for a stringer will be defined
as the effectiveness of the stringer for carrylng stress
as compared with the cap strip. This definition will make
E' for the stringer slightly less than 0,50, say 0,43,

If the effectiveness factor for each member is applied to
the area of the member, an effective area 1s obtained.

Effective area = (3%x1,00)+(2x0,43)+(3x1,00)=6,86 square inches

P
Shear-lag stress in any member = ——— X B!
. deffect

. 20000 ' :
For cap strip —%.88 % 1.00 = 2920 pounds per square inch

For stringer _ggggg X 0.43 = 1254 pounds per square inch

6.86
Beamn—~theory stress = P/A = 20200 = 2500 pounds per square inch
. r—
Shear-lag stringer stress - 1254 = 0.50

Beam-theory stringer stress 2500

This result checks the original assumption., It is pos-
sible, therefore, to take shear lag into account by select-
ing effectiveness values for each element of the cross sec-
tion, The component areas are corrected by these factors,
and from there on the calculation is similar o that for
the ordinary beam theory. The actual value of the effec=
tiveness factors selected will Dbe governed by the mathemat~-
ical derivations to be discussed later,

Mathematical Derivation of Spanwise Curves

A box-beam cover 1s statically indeterminate internal-
ly to the first degree; therefore, with two static rela-
tionships and one elastic relationship, it can be solved.
The symbols are defined in appendix A, From these three

-



fundamental equations, differential equations for fgp, fg,

and £, can be derived in terms of the physical constants

and the loads of the problems, These differential equations
can. be solved mathematically for simple loadings and sym-
metrical sections. The ratio of fy to fp will be the
effectiveness factor for the stringer member in terms of
the cap strip.

The sketch of figure 3 shows the idealized beam with
applied moments and shears. The material in the bottom
of the beam ¢an be considered to be concentrated entirely
at the bottom flanges, The origin of the coordinates is
taken at the %tip. (See reference 1l.)

Effectiveness~factor curves for the idealized beanm
sketched in figure 3 will be mathematically derived. The
following assumptlions are made in the derivation:

1. Ribs, and hence beam, have infinite chordwise stiff=-
ness so that chordwise strains may be neglected

2e Diagonal tension in the sheet is taken care of in
factor G

Z. Sections and loads are symmetrical about thé yz plane
Fundamental equations.- OConsider the static equilib-

rium of the element dy (fig. 4 and reference 1), It will
be seen that

APy, = aSy, (1a)
Sqrd :
dPp = -—%——‘Y— - d5g ’ (1p)

From éssumption (1) and figure 5, it follows that the shear
stress

G .
£5 = ¢ (OF = A1)

but

and



and, by differentisation,

G
4f = - — (f - T a ’
5 (fy 1) dy , (1c)

Effectiveness factor.~ ZEquations (1la), (1v), and

(1¢) can be combined into four difrferential equations for
fp, f1, and f£,. (See appendix B for detailed derivations.)

For the beam in figure 3 the egquations for fp and £y
can be solved to be

M . A7 cosh K (L - y) ]
fp = — [1 + = - 2
F =~ &mn [ Ay  cosh X (2a)
M cosh K (L - ¥) ]
f: = =~ {1 - 2b
L~ Apn [ cosh XL (21)

where Ii/Aph is the ordinary beam-theory stress and the
term in the dbracket is the effectiveness factor of each
referred to the beam~thenry stress as unity.  Since the

EY for the flange, or cap strip is taken as 1.00 for con~
venience, the actual E! for the stringer referred to the
cap strip will bde

1 - cosh X (L-y)
£y, cosh KL (3)

E!' = = =
: fF 1 + ﬂ_‘_ cosh K (L-Y)
Ap cosh XL

| Gt ( 1 1
- —_— = =
where KX, the shear-~lag parameter, equals V/r....b - i

and the other symbols are defined in appendix A, Equation
(3) is plotted in figure 6 for various values of X and L

Limitations and Application of Spanwise Curves

Multistringer beams.- Eguations (2b) and (3) are for
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L,

a single-stringer beam.,  When there is more than one .
stringer, the usual case, the stringers between the cap
strip and the shear center sBhould be lumped into a single
stringer at the area centroid of the stringers, a distance

. b.zfroom -the .cap:.strip, -before . K 48 -computed. . This meth-:
od will give a good approximation of the average E! for
the stringers for a fairly symmetrical box beam. - The chord—
wise distribution between these stringers will follow the
shape of the chordwise curves: discussed 1ater.

For very unsymmetrical beams. such as D-beans, values
from equations (Zb) and (3) will be only very approximate,
but the general shape of the curves will ‘always hold. and
the values .can best be obtained from consideration of the .
location of the shear center and the center of gravity of
the effective material, B : :

Variasble sectiong.- E&hation%(Z) is strictly true
only if, at each spanwise station. the following condi-
tions’ hold B R :

' 1-
f(a)_ Constant K2 (A
,(b) _Cpnsﬁant A;/AF'and nc cambsf_ -
‘(¢) ©Constant beam-theory axial stress = M/ArTh
(a) Constant vertical-web shear stress Sy/ht

Conditions (c¢) and (&) are sought for in practical
wing design and condition (b) is usually fairly nearly
true, Condition (a) is seldom satisfied for a tapered
variagble~section wing dbut, by ‘the use of an average value .
far the panel, the error will not be large and Jjudicious
fairing of curves will give results accurate enough for
design purposes. : S R - : S

Riveted joints.,- TFor a constant-section stringer,

the slope of an effectiveness curve such as shown in fig- -~
ure 6 represents to some scale the change in axial load
per inch of span. This value is the design load for rivet
spacing between stringer and skin and will be critical at
.the free.end of the stringer where the slope is steepest.
Since for most wings the curves will not be precise, the
1,20 fitting factor should not be omitted in the design of
"rivets based on effectiveness curves. The curves of fig-
ure 6 are critical for stringers but are not critieal for
rivets; the 1,20 fitting factor will cover .any divergence.
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Mathematical Curves for Chordwise Effectiveness

In references 1 and 2 analytical solutlions have been
made that show the chordwise distribition for ideal beams
with a cover sheet without stiffeners (or infinitely close-
ly spaced stiffeners). This distribution follows a hyper=

bolic cosine law _
' X’
cosh <Yb g)

fF cosh Yb. (4)

f

where fy 4is the stress in the cap strip (x = D) and Y
is an auxillary parameter obtalined from the relation

tanh Yb  fp | (5)
Yo £y |

vhere fy/fp is the ratio of the stress in the stringer

material located at the stringer force centroid to the
stress in the flange, ¥Figure 13 of reference 1 is a curve
presented to facilitate solution of equation (5). The
ratio of f/f; from equation (4) will be the effectiveness

of any stringer in terms of the cap strip or flange. Gurves‘
of f£/f; for various values of Yb or fy/fy are pre-
sented in figure 7.

Limitations and Application of Chordvwise Curves

In general, the mathematical curves of c¢hordwise effec-
tiveness are not strictly accurate, because

(1) Most wings have a finite number of stringers and will
not follow equations (4) and (5) exactly

(2) Local conditions, dissymmetry of section, etc., will
vary curves

The theoretical curves, however, will give the general
shape of chordwise curves and also will give a2 point of de-
parture from which to correct for the local conditions of
the problem.
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Curves for Simultaneous Beam and Chord Bending

The previous discussion has dealt with effectiveness

curves for bending in only the beam direction. Wing beams

are subjected to both beam and chord bending. “For the box -
beam shown in figure 8 the chordwise-effectiveness curves
for beam and chord bending are shown and it will be noted
that they are not the same. For a precise analysis, this
dlfference means that there are two different beams with
different areas corresponding to the two effectiveness
curves. The beams must be separately analyzed for bean

and chord bending, which would be very tedious.

If a single value of effectiveness for both beam and.
chord bending can be selected, the beam may be analyzed by
the unsymmetrical-bending formula. This will be done by
using the beam-effectiveness curve as the true total effee~
tiveness of the beam. The error introduced will be small
for the following reasons:

(1) The chord moment, at the most, is only about one-
third of the beam moment and it is usually less than this.

(2) PFor the beam of figure 8, where the beam and the chord
effectiveness of members b and ¢ near the chord neutral
axis differ markedly, the stresses due to chord bending
will be small and the errors even smaller. This result is
true in Most box-~-beam sections.

(3) Material back of the main beam 1is usuwally ineffective
in bean bending but quite effective in chord bending. In
order to take care of this condition, the effectiveness
factor E' will be selected from consideration of chord
bending and the 3z coordinate of the material will be as-—
sumed to be zero, so that the terms will drop out of the
beam—~bending calculations just as though the beam effec-
tiveness were zero, but will not drop out of the chord cal-
culations.

(4) Where beam effectiveness is very low and chord effec-
tiveness is high, the value of the effectiveness factor
E' can be slightly increased over the value for beam ef-
fectiveness In order to compensate in part.

A-1little thpught.and care. in evaluating the relative chord
and beam effects will give effectiveness curves that are
sufficlently accurate for design purposes.
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RELATION OF SHEAR CENTER TO EFFECTIVENESS CURVES

In symmetrical sections the 1deal curves of figures
6 and 7 are usually sufficient guide for abtaining fairly
accurate results. In unsymmetrical sections such as D-
beams, however, the ideal curves give a guide as to the
shape of the curves but are of little service in selecting
the values, because it is nearly impossible to get an accu-
rate value of X with which to enter the curves. The lo-"
cation of the shear center and the centroid of the material
effective iIn bending are used as guides in drawing effec-—
tiveness curves for such beams.

Shear-cenfter location.~ The shear center, s.c., of a
section shall be defined as the point at which any load may
be applied to the section without tending to twist the sec-
tion. Only pure bending will occur. (It should be noted
that the sheer center is not necessarily the same as the
elastic axls about which the section twists.) For a sym-
metrical section the shear center will coincide with the
centroid of the section., For unsymmetrical sections, how-
ever, the resultant of the shear forces on the section
does not pass through the centroid. (See fig. 9.)

The point s.c. 1is so located that the moment of the
shear forces about s.c., 1s zero. Any load applied
through point s.c. will cause pure bending in the direce
tion of the load. Reference 6§ shows that for a D-beam
seetion the shear center s.c. lies as shown in figure 9(c),
inside the closed torque box and not far from the centroid.
The heavier the vertical web becomes with respect to the
skin sheet thickness, the closer the shear center will move
toward the web.

Shear center with shear lag.~ The presence of shear

lag is taken care of by a reduced effectiveness for the
area of matérial other than at the cap strip. In a D-beam
this reduction will move the centroid of the effective area
closer to the web than was the centroid of the total area
and hence c¢loser to the shear center. For sections with
closed torque boxes it will be assumed, therefore, that the
shear center and the centroid of the effective material
coincide and fall within the torque box. This assumption
1s only approximate but the error introduced is small. The
assumption is a useful one, because rules that apply to the
location of the shear center can be applied to the centroid
of the effective areas and will serve as a control on the
shapes of the effectiveness curves selected.
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Sample effectiveness curves for wings of twofairplanes,
airplane A and airplane B will be drawn. Calculations for
the corresponding stresses were made inrvthe‘vlng of-air-
plane A (not included herein) and colparisan with test re-
sults will be made. PFor the wing of airplane B, sample
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be drawn for the .wing.of. .airplane A:from statlonsw18 £6-110.
Flgure 11 shows a typlcal cross section and plan. Inboard of
station 18 the section will be consideregd. stiff.enough to
neglect shear lag, because of the 0, 081-1nch doubler plate

(1ater altered to O. 102 iheh but here kept at 0.081 inch
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for comparison with tests). Outboard of station 110 there

is a large hole in the top that will be considered. Mate-

rial ahead of and back of the main box beam will be consid-
erel ineffective and will be neglected. Effectiveness fac-

tor E! is plotted for the top cover im figure 12.

The effectiveness in chord bending would be unity
throughout the cover but, ag stated previously, the stress-
es due to chord bending will be small and the curves will
be drawn according to beam bending only. Because of symme-
try, the shear center of the original section will be ap-
proximately at the cenber of gravity of the section, Shear
lag will not appreciably move the shear center and a de-
tailed study of these motions will be unnecessary in this
simple structure. (See airplane B D~beam treated later
for the case in which shear-center location is significant.)

Effectiveness factor determination for top surface.-

The effectiveness factor for the top surface can be deter-
mined as follows:

1, Stringer D -
Find spanwise-effectiveness @istribution for stringer D
At station 18, B' =0

because of hole beyond these
0 points

it

At station 110, B!

To approximate E' at station 66, compute for this

section
x? - 88 (2 4 1)
Eb Mp Az,

tio

= 0,40 t = 0.156 b = 8,00 A4p = 1.00¢ Ay = 2.702

These values were obtained from idealization of sec-
tion 30-94 (fig. 11). Consider one-half width of beam and
take b as the distance from front beam to center of grav-
ity of stringers and cover plate. Ap = elements (1) + (2)
+ 3(3), Ay = elements %(3) + {4) + (5) + (8) + (7) + %(8)

2 _0.40 X 0.156 4, _ 1 . _ 1

K
8.00 1.004 2.702

= 0,0078(0.,995 + 0.370) = 0.01066

]
"

0.1032
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From the curves of figure 6 the effectiveness at cen-
ter of span is 0,987 for X = 0,10. Therefore, assume that
E' = 92 percent at station 66 for stringer D. This value

1s considerabdly lower than 0,99 dut is Jjustified because:

a. The guantity X is very approximate owing to irreg-
ularities of section. camber, etec.

b, Curves of figure 6 are for a single stringer at cen-
ter of gravity of stringer material on one-half of center
line, For stringer at center line of total section, E!
will be less, following smooth curve of figure 7,

Inboard of station 66, curve D can bPe assumed to fol-
low very generally the shape of the ideallized curve and 1is
held high in order to take care of the increaged stiffness
from stationg 18 to 30 because of the doubling plate. Out-
board of station 66, the curve has the i1dealized shape but
is lower than the inboard curve because of the thinner
cover sheet.,

2. Stringers B and P -

Stringers B and F can be considered fully effective
over almost the entire length of the beam, because of
their proximlty to the flanges and their continuity through
the plane of symmetry of the ailrplane. At station 126 the
effectiveness will be zero because the hinge fittings of
the outer panel are attached to the beams only. The effec-
tiveness curve will stay very high until quite near sta-
tion 126, so that in the region from stations 94 and 110,
E' will drop only slightly.,

3 Chordwise Plots -~

With tentative E' curves plotted spanwise for string-
ers A, B, and D, chordwise plots through these stringers
may be made using the shapes of ideal curves and with fige
ure 7 as a guide.

4, Stringer ¢ -

From the chordwise plots of step 4, the spanwise
curve for stringer C may be obtained., Note that this curve
Is similar to that of stringer D but is slightly higher.
The shape of this curve is a cross check on the accuracy
of the chordwlse plots.
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5¢ Stringer E -

At station 18, E! will be very nearly equal to 1,00
because of continuity. At station 110, E' equals O.
Therefore, the curve will be as shown in figure 12. At
the outboard end it will coincide with the curve for ©
because of the symmetry. The chordwise plots may now be
completed. Bottom-surface effectiveness curves were also
drawn but are not shown.

Comparison of analysis with test results.- Final

stress values obtalned by the effectiverness-factor method
of analysis from the curves of figure 12 are plotted in
figure 13 as a chordwise plot and are compared with test.
readings taken with Huggenberger strain gages on the ac=
tual wing surface. These test results are as reliadle as
test results can be expected to be, for there was no buck-
ling in the skin nor undue dlstortionsg during the observa~
tions. Ourves for the stress by the beam theory and by
the NACA substitute single-stringer method of shear-lag
analysis are also presented for comparison. '

Agreement between test values and the effectiveness—
facter method is generally very good, and it 1s easily ap-
parent how to alter the effectiveness curves to improve
the agreement, It was assumed that stringers B and 7T
were fully effective and stringer E nearly so. This as-
suription was conservative. If the values of ET of these
members were dropped slightly below 1,00, the agreement
would improve. The curve as drawn, however, is sufficlent-
ly good for design purposes.

. Note that, with the test results, compressive stresses
tend to be lower at the front beam and higher at the rear

beam than computed because of the effectiveness of the ma-

terial outside the box beam, particularly for chord bending.

The NACA method for just beam bending indicates that
good agreement could be had if the chord effect were super-
posed on it. The necessity for idealizing the section ac-
counts for the symmetry of the curve and the lack of local
irregularities that are picked up by the effectiveness-
factor method. The ordinary beam theory shows good agree-
ment only at the front beam and emphasizes the need for s
quick and relatively accurate shear-lag method. The
effectiveness~factor method seems to fulfill this require~
ment admirably.
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Wing D-Beam of Airplane 3B

The D-beam in the wing of airplane B is guite unsymmet~
rical and hence compensatlon for shear lag is more compli-
cated than for the ordinary box beam,  In addition to hav-"
ing smooth effectiveness curves in chord and span directions,
based on the 1dsal curves of figures 6 and 7, the location
of the sheaxy center and the centrold of the effective mate-
rial must be made to follow a smooth curve,

: A complete shear-lag analysis of this wing has been
made by the Grumman Aircraft EBngineering Corporation by the
use of the effectiveness~factor method. In the present re-~
port a detailed description of the reasoning behind the ef-
fectiveness curves 1s given, Certain modifications of the
curves are suggested, and new calculation forms are pre-—
sented to speed up future wing analyses.

In the analysis separate curves for beam and chord ef-
fectiveness E'B and ZE's were drawn and used in the
unsymmetrical-bending formula. This method is not strictly
accurate mathematically and instead the method fer a single
E!'! 1s recommended. In the case of the wing for airplane B,
the error i1s insigniflcant because the product of inertia
is very small at most sections, which would not necessarily
be true of all wings.

L tion h center.~ The best place to start
the shear-lag analysis 1s at the hinge fittings between
the center section and the outer panel of the wing where
the location of the shear center and loads are completely
determined. (See figs. 14, 15, and 16.) For positive
1ift, all the tension load is carried at C (fig. 17);:
therefore, the shear center lies on a vertical line through
C and the compression load is divided between A and 3B
inversely as theilr distance from the shear center line,

Inboard of the hinge fittings, the material in the
bottom cover forward of the cap strip € will start to
take some of the compression load as the sheet transmits
shear around from A and forward from C, This action
moves the center of the compression load forward and with
it the shear center, At the plane of symmetry of the alr-
plane the shear center will be the farthest forward bdut,
because the shear-~center line must vary in a very easy.
“Ssmnooth curve, it will not come as far forward as though
there were infinite length to the center section.
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Outboard of the hinge fittings the presence of the
wheel well in the bottom surface prevents the compression
load from distributing forward. This result keeps the
shear center in line with the lower cap strip until oute
board of the wheel well, From there to the tip, the shear
center will move forward as the compression loads spread
forward, until at the tip the shear center will coincide
almost directly with the location according to the beam
theory, The motions of the shear center are shown in fig-
ure 14, A method of checking the location of the shear
center will later be describded.

Effectiveness~factor determination for top surface,-
If the assumption that the shear center and the centroid
of the effective areas coincide is used as a guide and the
curves are faired to look like the ideal as much as is
practicable, the effectiveness curves in beam bending may
be drawn. (See fig. 15.)

Phe cap strip B will be considered to have unit ef-
fectiveness throughout. '

1. Inboard of hinge fittings -

The value of B! for stringer G will fall off rap-
1dly as the leading edge H and stringer € duild up,
in order %o keep the centroid of the effective material
back with the shear center. At the plane of symmetry
(station 0) stringers € and H will have an effective-
ness of about 55 percent because it is impossible to load
them any more than by means of the shear iIn the sheet.
Stringer G will come up a little from a low point at
station 44 as the shear center moves slowly forward.

The ideal curves of figures 6 and 7 are used to fair
in the shape of the stringer curves. It is believed that
the curve for stringer E would be improved if it were
made to drop off to zero between stations 29 and 44, since
it is impossible to s%ress the end at station 29 with more
than the sheet can transmit in compression.

3., Outboard of hinge fittings -

The effectiveness of stringer G will have to fall
off very rapidly through the wheel well as stringers OC,
D, E, F, and H Dbuild up from zero in order to keep the
shear center and the centroid of effective area loads over
the lower cap strip. Stringers C, D, E, and F will take
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more or less ideal shapes, dying out to zero at each end,
The maximum height of these curves will be governed by the
condition that the shear center cannot move forward too
fast outboard of the wheel well and by the rate at which
the top cover sheet can transm.t shear .as shown by the
slope of the chordwise—~effectiveness curves.

-Stringer H 1is kept very low until outside the wheel
well because of the discontinuity of the torgue box through
this region and the nature of the curves for the under sur-
face. Outboard of the wheel well H will gradually rise
to unity near the tip as the shear forces in the sheet load
it, BStringer G will drop to zero at station 277,

3., Material hack of cap strip -

To neglect completely material back of the cap strip
as lneffective 1n beam bending would introduce appreciable
error, particularly for stringers near the cap strip, where
it 1s necessary to transmlt considerable shear in the sheet
and riveted connections., In the analysis of effectiveness
factors for beam and chord bending, the curves were as
shown in figure 15, If a single factor E' is used, as is
recommended for future eurves, the E' for member A would
follow the E'p of figure 15. The ZE!' for the trailing

edge material (element V) would be taken equal to E'z of
figure 15, and the material would be assuned concentrated
at the beam—bending neutral axis (z = 0) so that it would
enter the chord-bending dut not the beam-bending calcula-
tions,.

4, TFairing in curves -
The final curves are obtained by working between the

chordwise curves and the spanwise curves, with the ideal
shapes and the relative effects of beam and chord bending

. in mind. They should show the general behavior of the top

sheet without consideration for the minor irregularities
that must be taken care of with more detalled investiga-
tions.

Effectiveness~factor determination foy bottom sur-—
face.~ The lower cap strip will be considered 100 percent
effective throughout in computing the effectiveness fac-
~tor.-for.-the bottom surface... .

1. Inboard of hinge fittings -
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Stringer J will be zero at the hinge station because
the fitting is only on the top chord. It will bduild up as
shown in order to keep shear center back where it shounld de.

Spanwise plots L and L' need no comment. In the
chordwise plots of figure 16, however, that for station 44
seems in error. The dotted line should be followed, not
the solid one, since the hole outboard of station 44 pre~
vents stressing the sheet at this point, even in tension.

2., -Outboard of hinge fittings -

In the wheel-well region, stringer J is sudbject to
local deformations caused by the discontinuity of the
torque box through the wheel well. The inclusion of these
effects in the general analysis would be very difficult;
the effectiveness for menber J was therefore taken at
zero from the hinge to station 157 for the bending-section
properties and the local effects were later superimposed
thereon,

Springer L has very nearly the ideal effectiveness
shape, but the ideal curves would indicate that it should
not cone up from station 142 quite as steeply as is shown.

3. Material back of cap strip -

Effectiveness curves for the material back of the cap
strip are drawn lna manner similar to that for the top
surface.

COMPUTATION ¥ORMS FOR BENDING STRESSES

Tabular forms have been prepared to facilitate compu-
tation of axial stresses and loads in wing beams; samples
of the forms are included as tables 1 and 2. Table 1
shows the calculation of section properties for the effecw~
tive areas. OColumns 1 to 17 and computation of Ixy, I,;,

and I,, need no explanation. The symbols ©C,, C,, C4,

and C4 represent terms in the unsymmetrical bending formu-
ula altered to suit the effectiveness-factor method of
analysis.

MoK - MeI MaK - MpI
f5 = 2 Coxx gigxse S 7 B 22 E1; = K,B'x + KBz
: Iyxlzy = Ixg Ixx;zn"lxs
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The values of K3 and KXz $n colunns 26 and 27 for
each flight condition are used in table 2 to compute the -
bending stresses and the axial loads in each member.

These load values are used in obtaining the shear stresses
in the section and need be calculated only for those condi-
tions in which the shear stresses nay be critical.

SHEAR STRESS AND SHEAR CENTER

As a rough check on the accuracy of the effectiveness
curves, it would be desirable to be able to find the locaw
tion of the shear center in a fairly rapid, straightfor-
ward fashion. This shear center should correspond to the
axial stresses and loads that were odbtained from the curves.

The shear center may be found by computing the shear
stresses in the sheet and the webs due only to bending and
"then by finding the point in the section around which the
moments of these shear stresses are zero. It is an estabd-
lished principle that, when the axial bending stresses and
loads in the members have been selected (whether rightly or
wrongly makes no difference), there is only one conbination
of shear stresses that will naintain equilibrium. This
principle has been discussed fully in references 6 to 10
and will now be discussed in detail. The principle states
that, for any set of axial loads, it is possible to obtain
a corresponding shear center. The spanwise curve of these
shear centers will then serve as a check on the effective-
ness curves, and the shear stresses obtained can be used in
the deslgn of the webs, sheet, and riveted connections.

Fundamental Equation for Shear Due to Bending

Consider the equilidrium of the element shown in fig-
ure 18 representing a portion of a box beam. Assume that
the effective area of the sheet in bending is combined
with the stringer. If Qn 1is the running shear in pounds

per inch at station n, then

o Qn=dy+‘11

where dP/dy 1s the average change in axial load per inch
in the stringer over the elemental distance dy, and ay

is the average shear per inch over section 1.
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If there are several other stringers between sections
1 and n (fig., 19), then the shear per inch st sectien n
will De

qn"'

Lad ¢ -

ap .
ay + q, e (7)

or, in terms of shear stress where q = f.t.
n

ar '
footn = £ §o + f5. %, (7a)

_ n .
The term 2 %% 1s easlly obtained from the computed ax-—
1 .

ial loads, If a load curve ig drawn for each stringer and
cap strip, the slope of this curve at any station will be
dP/dy. A less accurate method that can be used if desired
is described in referemce 7; 1t gives the average shear
over a finite length of wing. Table 3 is applicable to ei-
ther method. :

Derivation of Equation for BShear at Cut Section, g

The final value of shear flow or running shear an
at any point due to bending alone must be such that the
total shear deformation around the section from section
n back to section =n. will be zero. Only one value of
q; will make g, fulfill this requirement. From the
method given in references 6, 8, and 9, q, may be ob-

tained by the method of least work.

Reference 10 presents a method of finding the total
shear .In a section, both bending and torsional, by a stat-
ically determinate method without the least-work solution.
Reference 7 has amplified the method for general applica--
tion in a simple straightforward fashion that completely
eliminates computation of the shear center.  If the shear
stresses were the only consideration, this method would be
the most practical. As a check on the shear-lag effective-
ness curves, however, 1t 1s here desirable to be able also
to find the shear center in a rapid fashion, which can be
done only by making use of the least-work solution and ob-
taining the shear stresses, just due to bending, without
the superimposed torsion, The computation 1s not much
longer than that shown in reference 7 and the additional
information obtained is worth the difference.

The least~-work solution requires that
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__wbe;gA“Wm>is the total work due to shear deformatioan in th
section, e . ‘ S - .

L
1
W= th/p fg, tn 48
0
integrated around the complete section when f£,t = q5, an
L .
ow 1 . afsn : :
_— = = 8
of , G‘/[: fsn bn of g, ds = 0 (8)
¢}
But, from equation (7a)
af
Sp . 52
afsl tn
so that equation (8) becomes
L
1
- E‘/P fsn t, ds = O

For any section, G can be considered a constant and
will be assumed to include the effect of diagonal tension,
Therefore

' L

;/h £o_ ty ds = 0 . (9)

0

If equation (7a) is substituted in equation (9),

L L

n
f_t_lz Eds+f q; tX ds = 0
. tn,,l dy. tn '

o Qeom B
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L fn :
; (z as\ey
0 \a1 dyjtn
q = (10)
L
J £ de
0 n
If equation (10) 1s substituted in equation (7),
L (2 gp\¢
a J —|-2 de
ap 0 1 4¥/tp
o, = I —- (11)
1 4y L &
J X as
0 ty

.BEquation (11) is perfectly general and is applicabie to
any single cell beam. Note that an 18 Jjuet the shear

due %o bending and assumes the shear loads to be acting
through the shear center. 8hear q, 1is also the average
shear flow per inch over the spanwise distance dy.

Double Oells and Other Shapes of Beams

If the box girder has more than one cell or has mate-
rial extending out beyond the single cell, the shears may
be found by extending the same principle, A detalled der-—
ivation for finding the redundant shears in a double tor~
slon box 1s presented in appendix O.

In the type of sectlion shown in figure 20 the shear
in the extended flanges 1s scatlcally determined becaunse
at the free edge the shear is known to be zero and the
shear at any section of the extension may be obtained by '
the relation

n
aP :
a T == (12)
1 o ar

The shear from equation (12) can then be directly asdded
to the shears in the box, and the problem is reduced to
that of a single torque box.
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Location of Shear Center

Once the shear stresses due to axial loads have bsen
determined the shear center may be located, If the ex-
ternal shear loads are considered to act through the shear
center, the moment of the shear stresses adbout any point
such as the center of gravity must be equal to the moment
of the shear loads about that point, for static equilib-
rium.

The moment of the shear flow q about the center
of gravity is equal to q times twice the cross-hatched
area in figure 21.

208 = Xpzy,y = XpyaZy

For a section of large curvature, such as in the nose
D, the area bhetween chord and curve may be estimated, dou-
bled, and added to formula (13), if increased accuracy is
desired.

Now resolve V. and Vz into a single shear V and
take moments

(an + sz) d =Vd =Zq 2dA
aA
@ =212 (14)

where d 1s the distance from the shear center to the
center of gravity. Therefore,

ﬁ
v
xsc=dz.z=—z-—?——zh'2u=—-zz_—?vzq2ﬂ
o v v Ve + 7V,
_ : (15)
Vx VyZq 244 ViZq 24A f
Zge, S b == ——g— = —mg——=
sTe v v Vx 4-Vz
-’

The location of the shear center for each station should
plot in a smooth spanwlse curve if the original effective-~
ness curves are fairly accurate.
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Shear Due to Torsion‘

Since Vy and V, are not located at shear center,

there will be 2 net torque on the section about the sheax
center, .

+ z )

T =T0+v ( - X )-Vx (zc.g. S.Co

z ‘Xec.g. S.C.

The shear flow g4 on any section due to this torque will
be - : )

This shear flow can then be added to that due to the bean
and the chord bending to give the total shear flow and
hence the shear stress at any point.

Effect of Taper

Taper in both depth and width will affect the shear-
stress distribution. Taper in width can usually be safe-
ly neglected., Taper in depth, however, is important in
.the design of the vertical webs, since the cap strips will
carry & falr share of the applied shear load and relieve
the vertical webs.

Consider the tapered panel in figure 22. Take moments
about A and assume dy so small that V may be consid-
ered constant over its length.

VY dy + Ph = @Ph = Ph - Pdh = O
V dy - dPh - Pdh = O

dy dy

or, as expected, the applied shear is the sum of the web

shear a2 h and the shear carried by the cap strips

dy
P g% . The slope between the cap strips is dh/dy. The

web shear aP/dy has already been obtained entirely indee
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pendently of ¥V by the methods outlined and equation (11)
so that no taper correction will be necessary.

BEquation (16) can be used, however, as a rough check

dﬁ the shears obtained fron’ equation (11) by conputing the

tern P —h  from the axial loads and slope, adding it to

the vertical veh shears, and checking the sun with ¥V, the
apprlied beam shear on the section.

Tabular Forms. for Shear Computation

Table 3 has been developed for quick computation of
shear stresses and shear center. A brief explanation 1s
given here,

For ease in integration, elements should be.numbered
starting from the upper cap strip in a clockwise direction.
Shear panels should be numbered in a clockwige direction
corresponding to the adjacent counterclockwise slement.
Material in flanges extending beyond the torsion box should
be numbeged separately starting from the free edge. (See
fig. 23.

The cut will be taken in the vertical web, web A,
with thickness ta' Column 2 contains the width ds of

each shear panel measured between elements. Columns 6 and

7 are the coordinates x and =z of the various elements
measured to the center of gravity of the section. These
coordinates differ slightly from those of columns 12 and 13
of table 1 because in table 1 the coordinates are to the
center of gravity of each element, whlle in table 3, the
coordinates are measured to the point at whieh the element
is attached %o the skin, This method is necessary in order
that the summation of moments will be accurate. These coor-.
dinates may be scaled off the rib drawings.

Columnsg 8 and 9 should be watched for signs and the
absolute value of their algebraic difference should be
entered in column 11, Column 10 need be used only where
there 1s sharp curvature in the skin between elements, such
as in the nose D, Columns 6 to 11 may be omitted if the

shear center calculation is neglected.

Oolumns 12. 13' and 14 £ive the™Tate” of  change of ax- -
12l load for each element at the station in question. 4
tangent to the load curve is drawn at the station (see fig.
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24) and the slope is computed. Column 15 is the progres-—
sive summgation of the values in column 14 starting on the
clockwise side of the cut vertical web. In column 17, gy
is the shear stress in any member due to bending only. {Sze
equation (11).) From the shear-center location (calculated
or estimated) and the computations in lines 3 to 9, the tor-
sional shear gq 1is obtained, which 1s added to gqp giv-
ing column 18, The right-hand term of equation (15) is ob-
tained from the summation of column 19 and 1s used in the
shear—-center calculation in lines 12 and 13,

If 1t is desired to omit the shear-center calculation
and solve for the shear stresses by the statically determi-
nate method of references 7 and 10, the tadbular form may
still be used with slight modification. Colunns 2 to 5 may
HF omitted, Columns 16, 24, and 30 should be changed to
% %% x 20A, [eolunmn (15) x column (9)], Columns 17 and
19 méy be left out and a separate computation may be made
for the correction shear at the cut section

VBxc.g. - chc.g. - column (16)

2 X area of torque tube © bat

which is then added to column (15) to get q in column
(18).

Table 3 is worked out for station 232 of the wing for
airplane B as an example., This section has projections be-
yond the torque box, which are handled as previously noted.
Care must be taken that the proper sign is used for these
projection shears. Note that the top-cover projection
changes sign when added to the torque box in column (15).

For simplicity, the shear from element V 1is assumed
to be divided evenly between top and botton cover rather
than computed as though it were a double torque box.
Shears in the projections are unaffected by the torque
shears on the box.

The load curve of figure 24 is a good check on the
general trend of the stresses and the loads. Each
stringer or cap strip should show a smooth curve, The slope
of each curve at any point represents the load per inch that
the rivets must transfer from skin to stringer. This fact
can be used in designing the rivet spacing. The spacing
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will be most critical where the curves are steepest, that
is, at each end of the stringer.

*The curves for J and G are caused by the .reverse
bending in the front beam, and the irregularities through
the wheel-well region (station 142) are apparent in the
cap strips B_ and - X,

The values of AP/Ay of colunn 14 were obtained by
drawing tangents to the load curves at station 232, reading
values of P at station 222 and station 242, and dividing
by Ay = 20, As a check on the accuracy of the calcula-
tions, the summation of column 14 should be approximately
Zero.

ANALYTICAT CHECK_FOR‘EFFECTIVENESS‘CURVES

Final proof of the accuracy of the effectiveness curves
and the axial and shear stresses obtalned from them can be
made by using the principle of consistent deformations,

In figure 25 assume that the applied loads cause the
structure to deform as shown. If the effectiveness curves
and the computed stresses are accurate, then the deforma-
tion of point H +to H! should be the same, whether fig-
ured by the path A E! F' G! H' or by the path A B' C! D!
H', The first path will include axial deformation in AE
plus shear deformations in panels EF, FG, and GH., The
second path is made up of shear deformations in AB, BC,
and CD, and axial deformation in DH.

Axial deformations will be computed by the formula

_ AY
3 = fy 5
where fy is the average axial stress in a length Ay of .
a member. Shear deformation is computed from the relation

The effective shear modulus Ge should be so selected that

diagonal tension is considered.

In the following section a check is made for the wing
of airplane B between stations 232 and 277. (See fig. 26.
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Calculations for shear stresses at station 277 are not in-
cluded but are similar to those for station 232, For new
vork, approximate checks, which will serve as a very good
.eontrol, can be made when the effectiveness curves are
first drawn,

TOP COVER

In order to take diagonal tension into account from
reference 2, G will be selected at 0.86 = 0,2 X
4,000,000 = 800,000 pounds per square inch.

 SHEAR DEFORMATIONS

Panel Station 232 Station 277

q vl ds ) qds | 4 t [ és [ gds
(1b/in.) { (4n.) | (in)] ¥F5  [(1b/in)|{(in.){(in.)| tGe

c -4.9 0.040 | 7.40{-0.00113

E 9.8 .040 | 11,20{ .00343| -6.5 0,040{15.00|~0.00304

G 19.2 .040 | 12,00f .00720] 2.0 | .O4O| 9.00[ .00060

0 22,1 OO0 | 7.00{ .00U83| 19.5 .0l0} 7.00{ .OOuRY
Total  .01433 in, " 00183 in.

AXIAL DEFORMATION

Ele-~ |Average |[Average Ay PA
ment P area =¥
(1v) |(sq in.)|(in.) AE

B -~1430 0.404 45 -0,01592
B -510 210 45 -,01092
G -340 «204 45 -,00750
H -65 .083 45 -.00352

Then from figure 26,

Path BB « BEGH 0.01592 + 0,00183
Path BCEGE - HH 0.01433 + 0.00352

0,01775 in,
0.01785 in,

nu

This result checks very well, supporting the validity of
the effectiveness curves. BSuch checks can be made wher-
ever considered necessary.

Grumman Lircraft Engineering Corporation,
Bethpage, N. Y.
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APPENDIX A
SIGN CORVEXNTIONS AND SYMBOLS
~Signs- .
Applied loads:
Shear 1§ads - positive up, rearward and outboard

Bending moments - pésitiVe if causing compression in
upper rear corner of section

Pitching moments - positive if a stalling moment

Stresses:
Axial stresses -~ positive 1f tensile

Shear stresses - positive if in same direction as stalle
ing moment (vlockwise if section is viewed toward
plane of symmetry of airplane)

Coordinates:.

Xy ¥y 2 - posltive if rearward, outboard, and up from
origin

Elemental skin widths, ds:

Integrations in clockwise direction (same direction as
positive shear)

Symbols

The symbols used in this paper correspond to similar
ones in references 1 and.1l1, .

A cross-sectional area

Az 1ig flange, or cap-strip, area and includes any
ad jacent material considered to act with it. 47 1is
area of stringers from flange to center of panel and
includes the effective adjacent sheet. If there is

- """ohlyone stringer, Ay 1is one-half the area of the
stringer, Aqp = Ap + Aj ' -




axial load
shear modulus, including sffect of tension fields
thicknese of cover sheet

>

Young!s modulus

o B o o W

half-width of beam for esingle-~stringer beams; dlstance
from flange to center of gravity between flange and
center line for a multistringer beanm

Gt 1 1
K hegrel rmtr/-—-—-+—-'-
shea ag paramete % ( s iz

8 shear force

h depth of bean
4 stress
B' effectiveness factor (fy/fy)

Ef end B'g effectiveness factor for beam and chord bending

M bending moment (Ph)

Iyxs I‘z. Iy, geometric moments of inertlia
Y shear straln
q running shear, pounds per inch of skin

¥ total change in length of flange

L length of panel from free end to plane of symmetry.
Also total change in length of stringer

x distance along X axlis measured from oriﬁin halfway
between flanges of panel (equation (4)), or from
reference polnt

z distance along = axis measured from reference polnt

Xg.c.? TB.C.? %g.c. distance from ocenter of gravity of
material to shear center

Xc.ge" Yo.g.' 38.8. dietance from load axis to c.8. of

section



b4 auxiliary parameter

o angle of attack

¥ total work

T torque

Y applied shear on the section

V¢,V, applied bean chord shear on section

ds width of shear panel
dp - axial deformation
dg shear defprmation
Subscripts .

t due to torgue

b due to bending

a at section a

e effective

B beam

c chord

F flahge

LA ' stringer

8 shear

T total

W weﬁ

c cover sheet

c.g. center of gravity
"s.c. ‘shear cénter
at section n

origin
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APPERDIX B
DETFAILED DERIVATION OF
SPARVWISE EFFECTIVENESS EQUATION

The fundamental equatlons are:

dPy, = aSy, (1a) -
Py = s"ﬁd’ FT- (1b)
afg = i% (£p - £1) day (1e)
In equation (la)
- 1 aP; = afpdp dSg = £ tdy (2)

so that 1f squation (la) is differentiated and equation
(1c) 1s sudstituted,

3
a“ £ df G
g s .8 (£ - £1) (v)
dy AL BbAy,

From equations (1a) and (a)

From equations (1b) and (a)

£t
fp = f ye f dy (a)

and from equations (c) and (a)

B
- [ - n (e)
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Substitute equation (e) in equation (b) and simplify

a®fy Gt (;r ) Sydy
dy= Eb 1 fy - EbAL Ash
T <: . 1 . Gt 1 Ap + Ap Sydy
T Eb \Ap,  Ay/ U T Ev ApAp Ay + Ay n
Since
iI:'_:_A;E=L+_}._
ApAp Ag F
and
‘ A + Ap = Ap
Syd
BE D )
dx Ap Aph
Let

x® = 2 (L
Az, AF

Also Sydy = aM, so that equation (f) becomes

2 .
a"fy 2 2 M

—3 _ k%, + K- — =0 (g)
dy L Anh C

and by analogous derivations,

2

d fp 2 =2 M
2 SAL

8%, | x2e, 4 x® DN | | (1)
dy= htAT

In the NACA methods of analysis, equations (g), {(h).
and (i) are solved by means of arithmetic integration so
that if K, M, Sy, h, s 4L, AP, and b are variable along
the span,. they may be taken 1nto consideration, (See ref-

-~ erences 1 to 6.) -

The solution of equatioms (g), (h), and (i) will bde
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obtained for the following conditions:

2 .
K™ = a constant

Mo a constant D
hAp -
SwA1

= t+ R
htAT a constan

Let p denote the gperation d/dy; then eguation (g) be=-
comes

2 3 2 M
- X f1 = =« K s5—
(p ) L him

Take the first derivative to eliminate the constant
p (p® -~ X3) £y, =0 . ()

This is a linear differential equation that has a sow-
lution in the form

f1, = Ae . + Be + Ce (x)

where my;, mp, and m,; are the roots of equation (J) for m
substituted for p and £y = unlty.

n(m® - X®) =0
or

m =-XK myg =K my=0

or equation (k) becomes

Ky

+ Be + O (1)

= As"KY
Iy ~.Ae
If equation (1) is substituted in equation (g) and is then
solved for OC, 1t will Dbe seen that

M
G:-—-————:D
hhm

Thus the solution of equation (g) for the condition stated
is
~-ky Ky

| fy, = Ae 4+ Be Y + D (my)

CO-M
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Similarly

fp = B 4+ F'¥ 4 1 (mg)

fy N~ KV 4 Qe 4 ' (mg)
Coefficients A, B, B, P, N, and § are deternmined by

the boundary conditions for the particular problem con-
sidered, -

-/

_ Stringer stress.~ For the beam of figure 3 the folw-
lowing boundary conditions hold when

y =0 .fL = 0
and when vy:=.Z. dfy -
dy

Substitute in equation (ml)

A +3B3 +D=20

-XL KL
)

-KA + KBe = 0

Solve simultaneously for A and B

. _poXL
- 2 cosh KL
-KL
p = _=De” "
2 cosh KL

Substitute in (m,;) and simplify

[ X(L-y) ~X(Ley)"
£, = — D |-e -e + D
2 cosh XL
=D _ cosh K(L-v) 21
fL ) [l cooh KL . , | ( )

b e, 0aD-strip stress.~ The boundary conditions for the

cap strip are:
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When
y = 0
M
fo = -
7 .
Agh
and when T
. (v
W
y = Il
afp
dy

In a manner similar to the stringers,

Ay cosh K(Ley)
fp.= D [1 i Cosh XL

-

(2a) .

LAPPENDIX C
"DERIVATION OF EQUATIONS FOR BEAM SHEAR
IN DOUBLE-CELL TORQUE BOXES

In terms of the shears (see fig. 27) at the cut seec-
tions gq3 and g5, the variable shears in the three

parts of the loop ay, q,, 2nd q4 are

b gp . o 4B
L £t ot - By
¢ ap c |
= - + L == f_t=f_t, -f,t,+ % &P (2)
¢ = %4 7 43 ie 5S¢ s,°1 I+ a
d d
ar ar
= + 5 = = f + 5 —
1g = 95 * I 55 Tga? spt2 * 2 Gy

In order to find the values of ¢, and qg, the
least-work solution is applied (see reference 12) to the
two loops (1) and (2):
a c
1 2 1 2 .
Wy =35 fv £g.7tds + g U/q fg, tds (v,)
a



39

e c
1
Wy = E@ﬁ £y, tds + E}Gf fq. tds (v,)
a a

v“Perform the operations

3V,

3w,
af = 0 5%, -
S, S5
and equations (b,) and (b,) become
c
* 3fg 3fg_
b fs_b t 'é"i.—;— ds + fsc t 'é—iT;— ds = O (Gl)
A 1 2 1
¢ df ¢ 3f
d f. t d 3¢ + f. t C 3g = 0 (cs)
Sqa =~ afg Sc¢  afy | 2
a 2 a 2
But
afsb oty afsc t afsc -t afsd t,
—— = ——— = ee—y - = » = e—
d s, t afsl t bfsz t afsg t

Substitute these expressions in equations (c;) and (cp) and
simplify

2 (o}
ﬁ f, t,ds +f f, t,ds = 0 (ay)
b c
c a
c c
ﬁ Tg, tods -f fg tpds =0 (az)
d c
a a
Substitute equations (a) in equations (d;) and (dj)
a a b (o} c
£, t ap t t
23 ds - ~-1 as - + 21 ds -~ - de
L/g Pl U/: & L I . t o2
(o] (o} . & .




] c a ¢ ct
: % t ar %o 2
2 . 2 at _2 2
L/Q e gads +u%: Py ds g v~/ T a,ds - P qpds
a a a a
o .
1,23
a
Simplify
a C a
by by by, b gp
S )] % 48 - g T %4 = T %L
a c
° c
t, apP
1,2
a
a . ¢ ) c R
t aP
2 2 2
qu T ds ~ qlf .‘E—- ds = f -%‘- ds 122 'a:-:);
a a a ’
(
t d aP
2
- fa —~ds T — ' (ey)
f % o dy 2
a

Equations (ey) and (ez), although apparently compli-
cated, are easily obtainable in a tabular computation by
progressive summation. Values of g, and gz can be
solved for simultaneously and substituted in equations
(a) for the shears at any section.

¢ ar

In the integration 122 i for the common web, both

upper and lower cap strips’should be involved, while in
the other integration they should be omitted. Skin effec-
tive in bending may be included in an approximate manner
by considering the area concentrated at the center of the
panel and then treating it as an extra stringer.

Triple torque boxes may also be handled by a similar
derivation, there being three equations such as equations
(e,) and (e;) to solve simultaneously.

The shear center may be found in the same manner as
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for a single torque box as soon as the bending shears are
determined, by taking a moment of these shears about the
center of gravity and equating it to the moment of the ex-
ternal shears about the center of gravity.
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Wing station
Figure 24.- Spanwise load plot for wing elements. ¥ ,18°; 1 g.
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Figs. 35,36,37

Figure 26=Deformation from B, station 232 1o

H,station 277.
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